Primary Care role in Chronic Kidney Disease (CKD)

Prof. Richard Hobbs, MD Oxford, UK

Primary Care role in Chronic Kidney Disease (CKD)

Richard Hobbs,
Pro-Vice-Chancellor
Professor & Head, Nuffield Department of Primary Care Health Sciences

University of Oxford, United Kingdom

Competing Interests

Speaker or sponsorship disclosures in past 3 years:

AstraZeneca, Bayer, BMS, Boehringer Ingelheim, Novartis, Pfizer

Management of patients with chronic kidney disease

- Definition, classification and prevalence
- Burden of CKD risk of CV and renal events
- Management
 - Lipids
 - Blood pressure & RAS Blockade
 - SGLT2

CKD definition & classifications

Diagnosis of Chronic Kidney Disease

Criteria for CKD (either of the following present for 3 months)

- eGFR <60 mL/min/1.73 m²
- Markers of kidney damage (one or more of the following)
 - Albuminuria (albumin excretion rate ≥30 mg/24 h; albumin-creatinine ratio ≥30 mg/g)
 - Electrolyte and other abnormalities due to tubular disorders
 - Abnormalities detected by histology
 - Structural abnormalities detected by imaging
 - History of kidney transplantation

Classification of CKD: GFR

GFR Category	eGFR (mL/min/1.73 m²)	Terms	Prevalence US population
G1	≥90	Normal or high	2.3
G2	60-89	Mildly decreased*	2.5
G3a	45-59	Mildly to moderately	4.6
	10 00	decreased	7.0
G3b	30-44	Moderately to severely	1.6
	00 11	decreased	1.0
G4	15-29	Severely decreased	0.4
G5	<15	Kidney failure	0.4

^{*}Relative to young adult level; in the absence of kidney damage, GFR categories G1 and G2 do not fulfill the criteria for CKD. CKD, chronic kidney disease; GFR, glomerular filtration rate.

Global prevalence of CKD: 12%

Albuminuria Categories in CKD

Category	AER (mg/24 hr)	ACR (Approximate Equivalent)		Terms
		(mg/mmol)	(mg/g)	
A 1	<30	<3	<30	Normal to mildly increased
A2	30-300	3-30	30-300	Moderately decreased*
A 3	>300	>30	>300	Severely decreased**

AER, albumin excretion rate; ACR, albumin-to-creatinine ratio; CKD, chronic kidney disease. *Relative to young adult level; **including nephrotic syndrome.

Prevalence of CKD

CKD prevalence by age

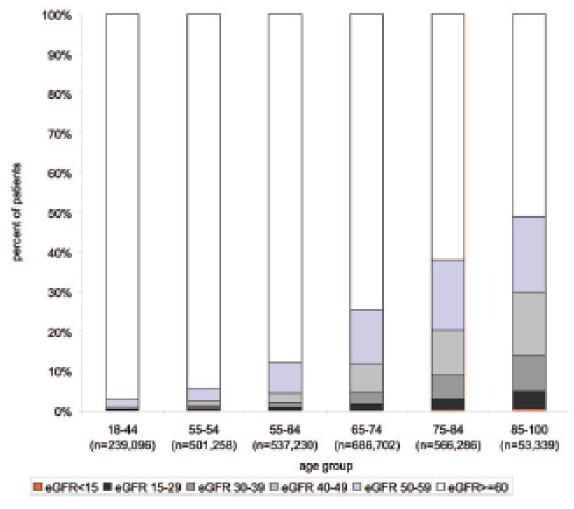
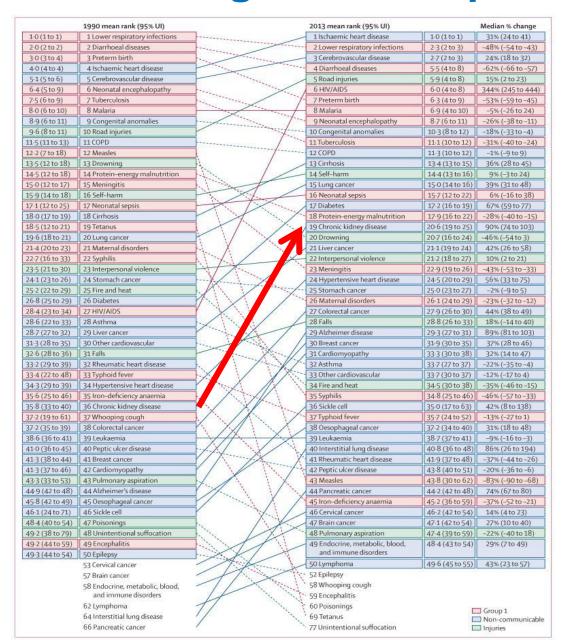
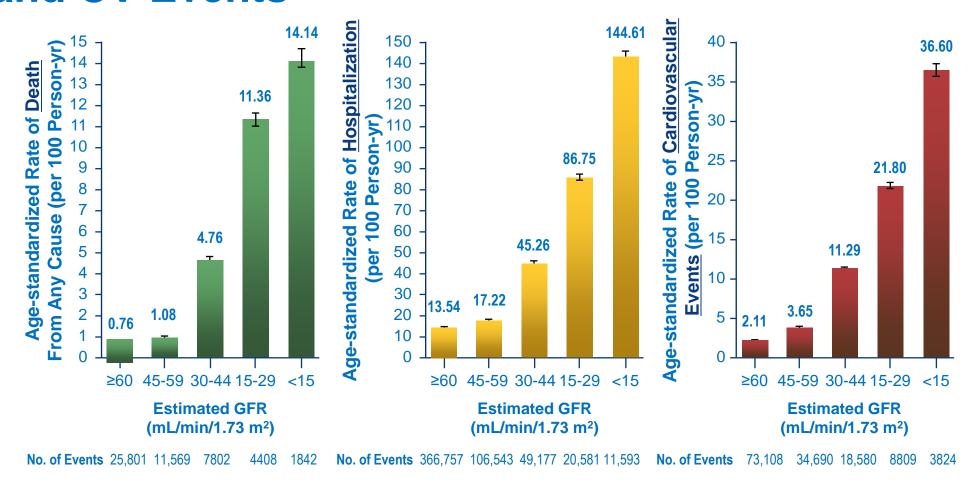


Figure 1. Prevalence of low estimated CFR (eCFR) by age group.

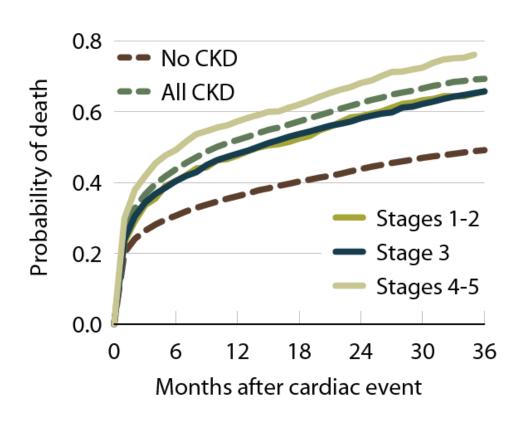

Risk Factors for Chronic Kidney Disease

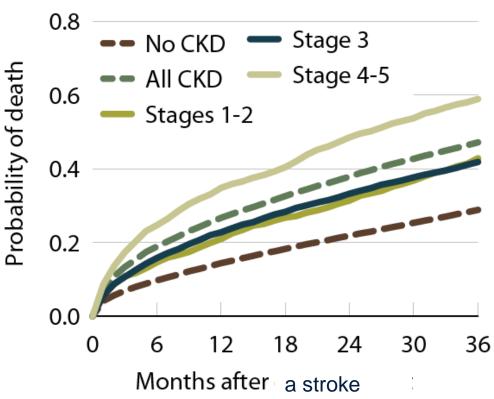
Risk Factors	Odds Ratio (95% CI)	<i>P</i> Value
Current smoking	1.13 (1.06-1.21)	<0.001
Obesity*	1.07 (1.02-1.11)	0.003
Diabetes [†]	1.45 (1.39-1.52)	<0.001
Hypertension [†]	1.71 (1.63-1.79)	<0.001
Cardiovascular disease [†]	1.31 (1.25-1.37)	<0.001

^{*}Body mass index >30 kg/m² or greater. [†]Self-reported. Data based on a survey of participants in the Kidney Early Evaluation Program (KEEP).


Importance of CKD

CKD is becoming a more important cause of death


GBD 2013 **Mortality** and **Causes** of Death Collaborators.. Lancet 2015; 385: 117-171


Reduced eGFR Increases Deaths, Hospitalizations, and CV Events

Age-standardized rates of death from any cause (left), hospitalization (middle), and cardiovascular events (right) and as a function of eGFR; N=1,120,295.

All-cause mortality after a MI and stroke, depending on eGFR

Diagnosis & Management of CKD

Diagnosing CKD

Patient with hypertension, diabetes, CVD, FH of stage 5 CKD, multisystem disease

Measure eGFR (ml/min/1.73m2)

GFR>60 and risk factors for CKD; repeat in 1 yr

GFR<60 -> repeat eGFR within 2 weeks

Measure urine ACR (mg/mmol)

•ACR<2.5(men) <3.5(women) – normal in diabetes •ACR<30 – normal

•ACR<30 - normal •ACR 30-70 - renal

damage

•ACR>70 – consider referral

Urine dipstick

Proteinuria and haematuria -> consider referral

Risk categories for kidney and mortality outcomes by GFR and albuminuria or proteinuria stage (KDIGO chart)

		UAE	A1	A2	А3
		mg/g mg/mmol	<30 <3	30-300 3-30	>300 >30
GFR stage	Description	(ml/min/ 1.73 m ²)			
G1	Normal or high	> 90			
G2	Mild	60-89			
G3a	Mild to moderate	45-59			
G3b	Moderate to severe	30-44			
G4	Severe	15-29			
G5	Kidney failure	<15			

When to refer from primary care

Consider referral if:

- Stage 4 & 5 CKD
- Higher levels of Proteinuria (ACR>70 mg/g) unless known to be due to diabetes and being treated
- Proteinuria (ACR >30 mg/g) & haematuria
- Rapidly declining eGFR (>5ml/min in 1 yr or 10ml/min in 5 yrs)
- Poorly controlled hypertension after using at least 4 agents
- Suspected renal artery stenosis

Cardiovascular risk management in patients with CKD

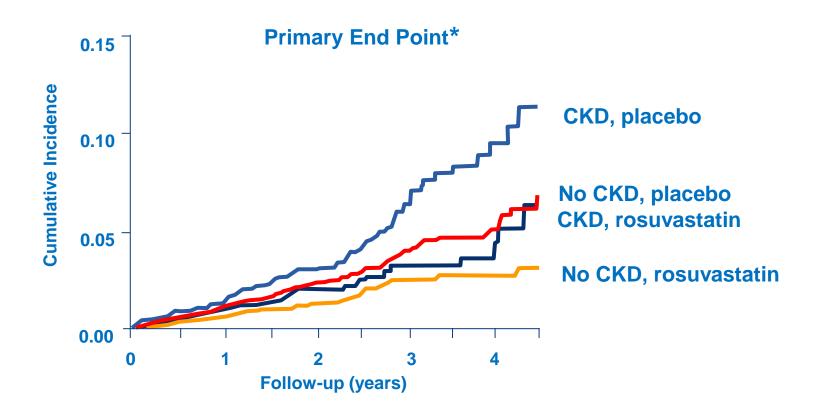
- Definition, classification and prevalence
- Risk of cardiovascular events. Impact of reduced GFR and albuminuria
- Management

Cardiovascular risk management in patients with CKD

Main aims of treatment

- Reno-protection: delaying progression of CKD
 - especially avoiding ESRD
 - reducing proteinuria (measure of renal damage)
 - slowing eGRF decline (measure of renal impairment)
- Cardio-protection: CKD accelerates major CVD events
 - Especially in Stage CKD 3b and 4

Evidence-based treatments


- Lipids
- Blood pressure and RAS Blockade
- SGLT2i

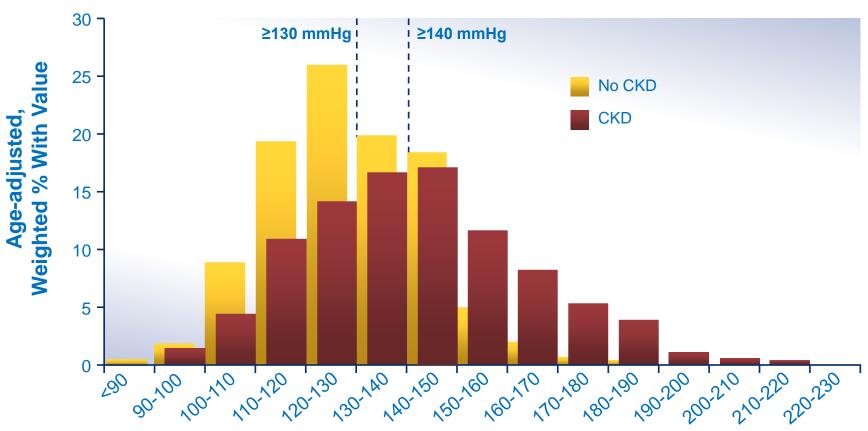
Statins Are Beneficial in Patients With CKD Not Receiving Dialysis

Category	Number of Studies	Relative Risk (95% CI)
All-cause mortality	11	0.81 (0.74-0.88)
Cardiovascular mortality	8	0.78 (0.68-0.89)
Major cardiovascular events	14	0.76 (0.73-0.80)
Fatal or nonfatal MI	8	0.55 (0.42-0.72)
Fatal or nonfatal stroke	5	0.61 (0.38-0.98)

In a meta-analysis that included 12 trials of statins in patients with CKD who were not receiving dialysis (n=36,325), there was moderate- to high-quality evidence that statins reduced all-cause mortality, cardiovascular mortality, and cardiovascular events.

Incidence of endpoints in JUPITER trial based on CKD

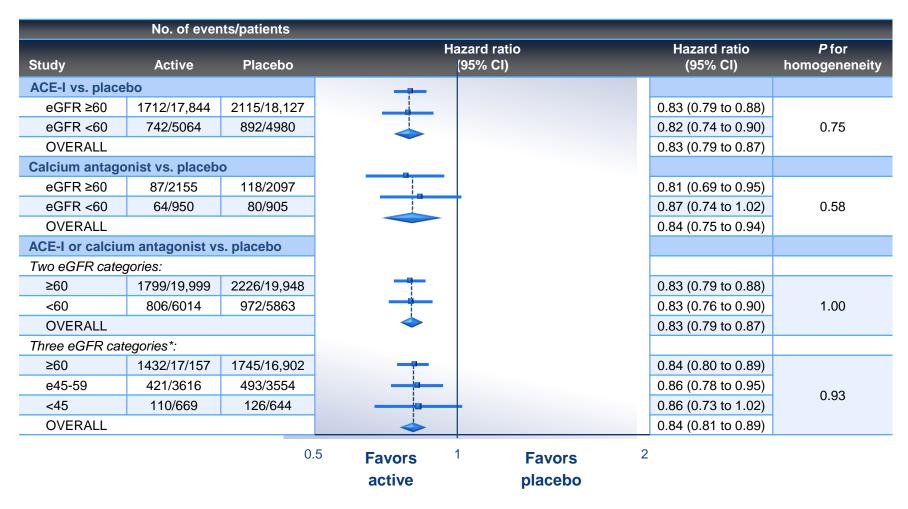
*Primary end point: non-fatal MI, nonfatal stroke, hospital stay for unstable angina, arterial revascularization, or CV death


Cardiovascular risk management in patients with CKD

■ Management

- Lipids
- Blood pressure & RAS Blockade
- SGLT2i

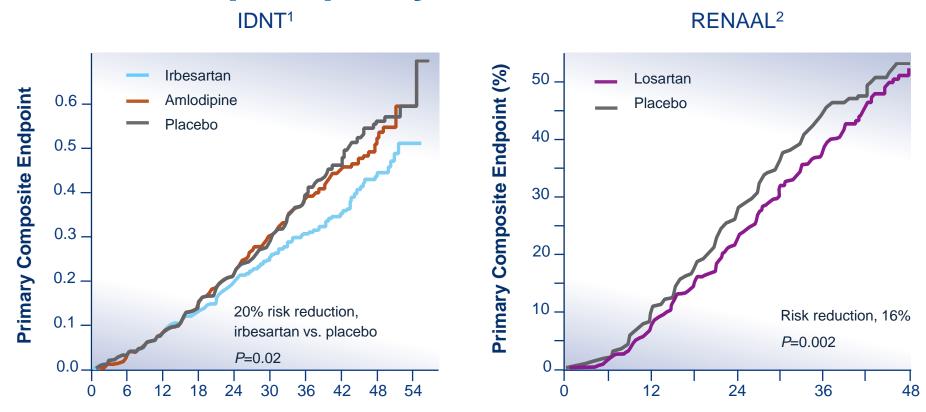
Subjects With CKD Are More Likely to Have Uncontrolled Systolic Blood Pressure


Systolic Blood Pressure

Systolic Blood Pressure, mmHg

Weighted, age-adjusted distributions of SBP among NHANES 1999-2006 participants with hypertension and with (n=1651) and without (n=7178) CKD.

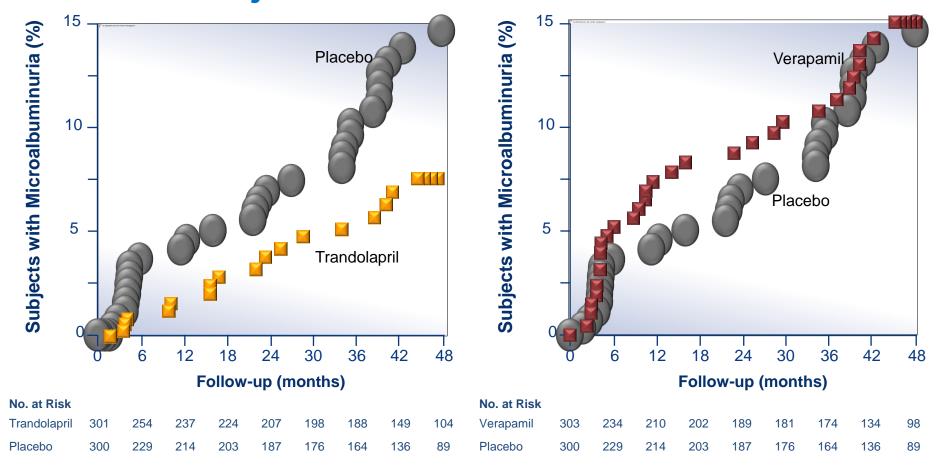
BP Reduction Reduces the Risk of Major Cardiovascular Events in Subjects With CKD


Values are relative risk per 5-mmHg reduction in SBP over time.

Cardiovascular risk management in patients with CKD

■ Management

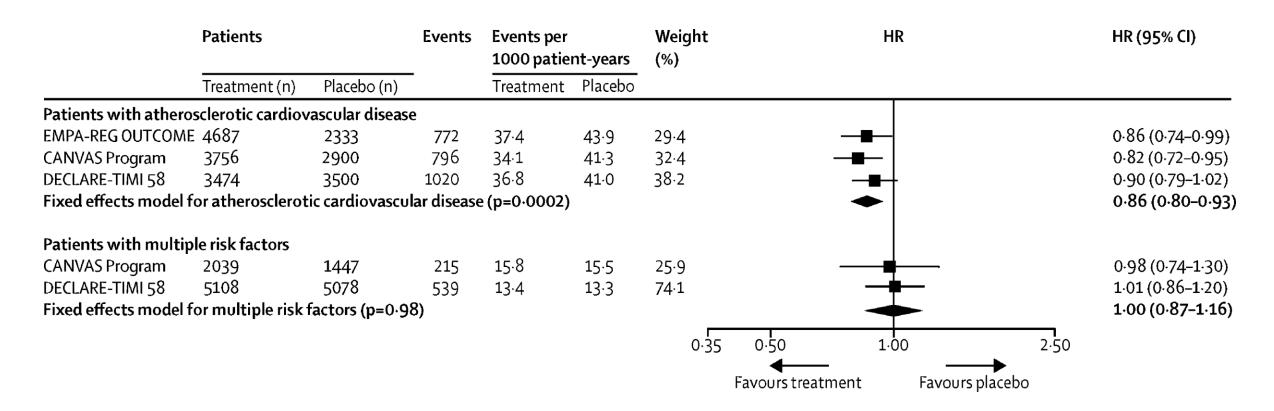
- Lipids
- Blood pressure & RAS Blockade
- SGLT2i


ARBs Are Effective for Slowing Progression of Diabetic Nephropathy

Primary endpoint (composite of doubling of serum creatinine, ESRD, or death) in the IDNT trial, which compared treatment with irbesartan, amlodipine, and placebo, and RENAAL, which compared losartan and placebo. Both ARBs significantly reduced the primary endpoint.

^{1.} Lewis EJ et al. N Engl J Med. 2001;345:851-860. 2. Brenner BM et al. N Engl J Med. 2001;354:861-869.

Treatment With ACEI Limits the Development of Microalbuminuria in Subjects With Diabetes

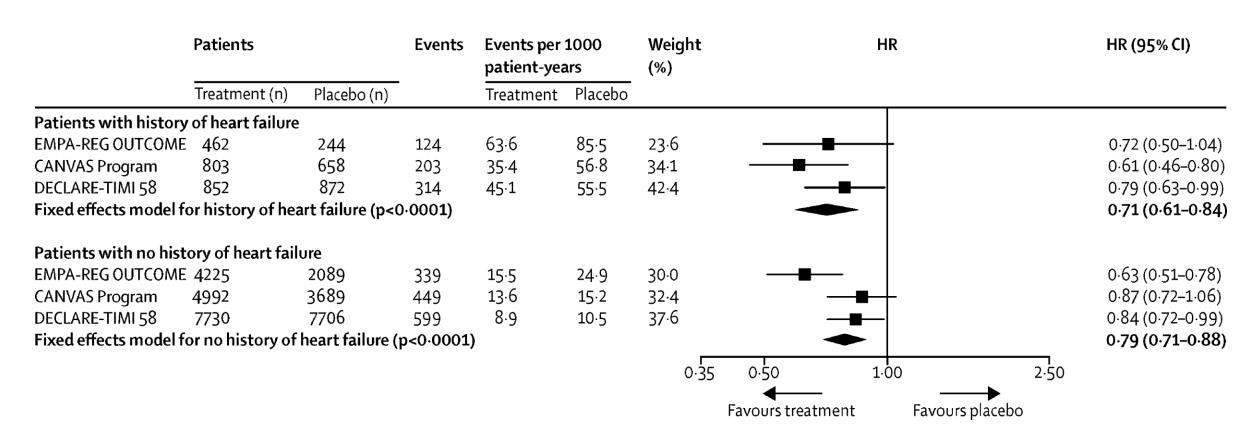


Cardiovascular risk management in patients with CKD

Management

- Lipids
- Blood pressure & RAS Blockade
- SGLT2i

SGLT2 Inhibitors effects on MI, stroke and CV death

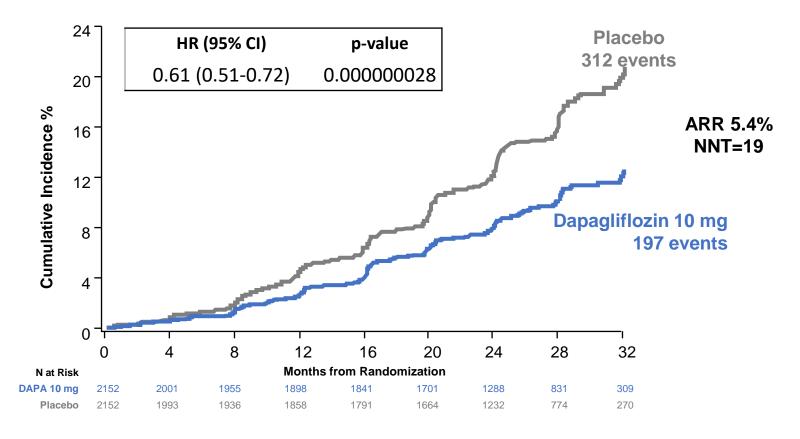

Zelnicker TA et al, Lancet, Volume 393, 2019, Pages 31-39

SGLT2 Inhibitors effects on hospitalisation for heart failure or cardiovascular death

	Patients		Events	Events per patient-yea		Weight (%)	H	I R		HR (95% CI)
	Treatment (n)	Placebo (n)		Treatment	Placebo					
Patients with athero	sclerotic cardiov	ascular disease	غ							
EMPA-REG OUTCOME	4687	2333	463	19.7	30.1	30.9				0.66 (0.55-0.79)
CANVAS Program	3756	2900	524	21.0	27.4	32.8	-			0.77 (0.65-0.92)
DECLARE-TIMI 58	3474	3500	597	19.9	23.9	36.4				0.83 (0.71-0.98
Fixed effects model f	or atherosclerot	ic cardiovascul	ar disease	(p<0.0001)			•			0.76 (0.69-0.84)
Patients with multip	le risk factors									
CANVAS Program	2039	1447	128	8.9	9.8	30-2		 		0.83 (0.58-1.19)
DECLARE-TIMI 58	5108	5078	316	7.0	8.4	69.8		+		0.84 (0.67-1.04)
Fixed effects model f	for multiple risk t	factors (p=0∙06	634)					-		0.84 (0.69-1.01)
						0.35	←—		7 2·50	
							Favours treatment	Favours placebo		

Zelnicker TA et al, Lancet, Volume 393, 2019, Pages 31-39

SGLT2 Inhibitors effects on hospitalisation for heart failure or cardiovascular death by history of heart failure



Zelnicker TA et al, Lancet, Volume 393, 2019, Pages 31-39

SGLT2 Inhibitors effects on renal worsening, ESRD, or renal death

	Patients		Events	Events per patient-yea		Weight (%)		HR	HR (95% CI)
	Treatment (n/N)	Placebo (n/N)		Treatment	Placebo				
Patients with atheros	clerotic cardiova	scular disease							
EMPA-REG OUTCOME	4645/6968	2323/6968	152	6.3	11.5	31.0			0.54 (0.40-0.75)
CANVAS Program	3756/6656	2900/6656	179	6.4	10.5	35.6			0.59 (0.44-0.79)
DECLARE-TIMI 58	3474/6974	3500/6974	183	4.7	8.6	33.4			0.55 (0.41-0.75)
Fixed effects model fo	or atherosclerotic	cardiovascula	r disease	(p<0·0001)					0.56 (0.47-0.67)
Patients with multipl	e risk factors								
CANVAS Program	2039/3486	1447/3486	70	4.1	6.6	29.5			0.63 (0.39-1.02)
DECLARE-TIMI 58	5108/10186	5078/10186	182	3.0	5.9	70.5 -			0.51 (0.37-0.69)
Fixed effects model fo	or multiple risk fa	ctors (p<0.00	01)						0.54 (0.42-0.71)
	•					0.35	0.50	1.00	
							Favours treatment	Favours placebo	

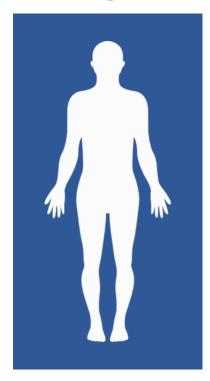
Renal and CV protection in patients with CKD with/without diabetes (DAPA-CKD): Primary Composite Outcome (sustained ≥50% eGFR Decline, ESRD, Renal or CV Death)^a

- aESRD defined as the need for maintenance dialysis (peritoneal or hemodialysis) for at least 28 days and renal transplantation or sustained eGFR <15mL/min/1.73m² for at least 28 days. Renal death was defined as death due to ESRD when dialysis treatment was deliberately withheld for any reason.² CV = cardiovascular; DAPA = dapagliflozin; eGFR = estimated glomerular filtration rate; ESRD = end-stage renal disease;
- 1. Heerspink HJL. Presented at: ESC Congress The Digital Experience; August 29 September 1, 2020. 2. Heerspink HJL et al. N Engl J Med 2020; 383:1436-1446

Primary Composite Outcome: Treatment Benefit Consistent Across Prespecified Subgroups

		Number (of Events			
	HR (95% CI)	DAPA 10 mg (N=2152)	Placebo (N=2152)	HR	95% CI	p-value Interaction
Composite of ≥50% eG	FR Decline, ESRD, or Renal or CV Dea					
All Patients		197	312	0.61	(0.51, 0.72)	
T2D at Baseline						0.24
Yes		152	229	0.64	(0.52, 0.79)	
No		45	83	0.50	(0.35, 0.72)	
UACR (mg/g) at Baselin	e (mg/mmol)					0.52
≤1000 (113)		44	84	0.54	(0.37, 0.77)	
>1000 (113)		153	228	0.62	(0.50, 0.76)	
eGFR (mL/min/1.73m ²)	at Baseline					0.22
<45		152	217	0.63	(0.51, 0.78)	
≥45		45	95	0.49	(0.34, 0.69)	
	0.13 0.50 1.00 ·	1 .25	•			
		Placebo Better				
		→				

- CV = cardiovascular; DAPA = dapagliflozin; eGFR = estimated glomerular filtration rate; ESRD = end-stage renal disease; HR = hazard ratio; T2D = type 2 diabetes; UACR = urinary albumin-to-creatinine ratio.
- Heerspink HJL. Presented at: ESC Congress The Digital Experience; August 29 September 1, 2020.


Safety Outcomes

Safety Outcomes ^a , n (%)	Dapagliflozin 10 mg (N=2149)	Placebo (N=2149)
Discontinuation of study drug	274 (12.8)	309 (14.4)
Discontinuation due to adverse event	118 (5.5)	123 (5.7)
Any serious adverse event	633 (29.5)	729 (33.9)
Adverse events of interest		
Amputation ^b	35 (1.6)	39 (1.8)
Any definite or probable diabetic ketoacidosis	0	2 (0.1)
Fracture ^c	85 (4.0)	69 (3.2)
Renal-related adverse event ^c	155 (7.2)	188 (8.7)
Major hypoglycemia ^d	14 (0.7)	28 (1.3)
Volume depletion ^c	127 (5.9)	90 (4.2)
Serious adverse events of volume depletion	22 (1.0)	18 (0.8)

- aSafety outcomes reported in participants on and off treatment; bSurgical or spontaneous/non-surgical amputation, excluding amputation due to trauma;
 - ^cBased on pre-defined list of preferred terms; ^dAdverse events with the following criteria confirmed by the investigator: i) symptoms of severe impairment in consciousness or behavior,
 - ii) need of external assistance, iii) intervention to treat hypoglycemia, iv) prompt recovery of acute symptoms following the intervention
- Heerspink HJL. Presented at: ESC Congress The Digital Experience; August 29 September 1, 2020.

Genital infections with SGLT2 inhibitors are common and typically mild to moderate in severity^{1–4}

Management

Raise awareness at the start of SGLT2 inhibitor treatment to manage expectations and promote early intervention¹

Provide practical hygiene advice to patients with T2D and their partners to **prevent** genital infections¹

Topical treatments or appropriate oral treatments can be used for mild to moderate infections¹

Usually occur early during treatment exposure and are typically self-limiting¹

T2D, type 2 diabetes

- 1. Wilding J et al. Diabetes Ther 2018;9:1757; 2. Boehringer Ingelheim Pharmaceuticals, Inc. empagliflozin summary of product characteristics. Feb 2020;
- 3. Janssen International. canagliflozin summary of product characteristics. 2019; 4. AstraZeneca. dapagliflozin summary of product characteristics. Nov 2019

Conclusions

- CKD is highly prevalent (globally >10% of the adult population) and carries a substantial risk of cardiovascular disease.
- Important to screen for CKD in primary care
 - eGFR and ACR
- Consider early treatment to prevent progression of CKD (decline in eGFR and worsening proteinuria) AND reduce CV events
 - Statins for cardio-protection
 - Antihypertensive agents for cardio-protection, plus reno-protection with RAS blockers
 - SGLT2 inhibitors for reno-protection and cardio-protection, additional to RAS blockade